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NextSTEP Advanced Propulsion Systems

• Next Space Technologies for Exploration Partnerships 

• Objectives: Advance the TRL of high power Electric Propulsion 

systems

– 50 kW to 300 kW per thruster range

– Test at a minimum system input power of 100 kW for 100 hours

– Operate over broad power and specific impulse range

– Scalable to MW

– Extended lifetime and operational (thrusting) time

– Manageable specific mass of total propulsion system

• 36 month effort with potential follow-on efforts for further technology 

maturation
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• XR-100 program is joint collaboration between Aerojet Rocketdyne

(AR), NASA Glenn Research Center (GRC), University of Michigan 

(UofM), and NASA Jet Propulsion Laboratory (JPL)

• XR-100 is a 100 kW-class Hall Thruster propulsion system

–Builds off of heritage technology, demonstrating capability to scale 

up to high power

• Performance Targets

XR-100 Nested Hall Thruster Propulsion System
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Metric XR-100 Design Goals

Specific Impulse ~2,000 to ~5,000 s

In-space lifetime capability >50,000 h

Operational lifetime capability >10,000 h

System efficiency >60%

System kg/kW <5 kg/kW
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X3 Nested Hall Thruster (NHT)

• UM developed the three-channel 
X3 NHT in collaboration with the 
AFRL, NASA GRC, and JPL

• Designed to 200+ kW

• X3, like other NHTs, scales up in 
power by adding discharge 
channels

• Each channel is independently 
controllable, enabling 
throttleability in thrust and power

• X3 design leverages extensive 
work on prior Hall thrusters. 

– X2 (UofM and AFRL)

– H6 (JPL, AFRL and UofM) 

– NASA-457M, NASA-400M and NASA-
300M 

• X3 incorporates a 300A, LaB6
hollow cathode developed by JPL
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Power Processing Unit (PPU)

• AR-developed PPU builds on AR heritage and AEPS 13 kW PPU

• Modular design supports parallel configurations, independent 
power to each discharge channel

• Easily expandable to higher powers

• PPU consists of multiple Discharge Supply Units (DSUs) and a 
System Flow Controller (SFC)

• DSU made up of:

– 4 Power Modules, Controllers

– Input and Output Filters

– Master Control Board

• DSUs can be operated for:

– Maximum thrust at 350V-400V

– Maximum Isp at 700V-800V

7



Mass Flow Controller (MFC)

• AR-developed MFC based on AR 

proprietary designs

• Both the MFC and Propellant 

Management Unit (PMU) use a 

Proportional Flow Control Valve 

(PFCV) designed for low cost

– Wide dimensional tolerances

– No welding

– No stroke or load adjustment 

required

• Each PFCV outlet has an integral 

PT for independent flow 

verification

• Modular design supports scaling 

to higher powers
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XR-100 Program Activities

• X3 Nested Hall Thruster testing up to 100 kW

– Thruster and facility risk reduction

• XR-100 System Test at 10 kW

– NHT, PPU, and MFC can operate together at 400 V and 800 V

• 45 kW PPU test

– Validated multi-DSU master-slave control relationship

• High current LaB6 cathode development and testing

– Modified design, demonstrated 300+A operation

• NHT and cathode plasma and thermal modeling

– Drove design improvements

– First-ever simulation of a Nested Hall Thruster

• XR-100 High Power System Test up to 100 kW
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XR-100 High Power System Test (HPST)

• Ultimate program objective for NextSTEP

– Culmination of all previous risk reduction activities

• Performed at NASA GRC’s Vacuum Facility 5 (VF-5)

– 700 kL/s pumping speed on xenon

– Facility base pressures 1x10-7 Torr, max observed 6x10-5 Torr-Xe
during 245 mg/s operation

• System test included:

– UM’s X3 NHT

– AR’s PPU

• 7 DSUs on cold plates

• SFC

– AR’s MFC

• 5 PFCVs – one for each discharge channel, two for high current cathode

– Thruster Heater, Keeper, and Magnets (HKM) run with lab power  
supplies
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XR-100 HPST Overview
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XR-100 HPST Overview

• X3 NHT radiation cooled on 
thrust stand

– JPL’s LaB6 hollow cathode

• MFC co-located with X3 NHT 
on metallic platform

– Use existing Xenon flow system for 

upstream regulator, flow meter

• PPU outside VF-5
– 7 DSUs on cold plates in racks

• Originally 1 DSU Inner, 2 DSUs 

Middle, 4 DSUs outer

• Reconfigured to 3 DSUs Middle, 4 

DSUs Outer

• For three channel operation, ran 

Inner channel on 30 kW lab power 

supply

– SFC next to Breakout Box (BoB)
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Test Equipment

• Previously validated and demonstrated during NHT risk reduction 
testing up to 100 kW

• Inverted-pendulum thrust stand operated in null-mode

– Based on UM X3 NHT thrust stand

– Capable of measuring up to 8 N, with 0.8% uncertainty

• Thermocouples placed throughout thruster, magnet coil, MFC 
body, DSUs

• Low frequency data collected at 0.5 Hz

• High frequency data collected with three oscilloscopes, high 
speed current and voltage probes

• Total xenon flow measured by 2000-sccm commercial flow 
controller
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Test Objectives

• Demonstrate thermal equilibrium of the XR-100 system operating 
multiple NHT channels at >50 kW

– First thermal equilibrium data to be collected

– Help inform future design work

– Validate technology can achieve stable and passively manageable 
thermal steady-state operation 

• Demonstrate electrically stable three channel XR-100 system 
operation at >50 kW

– Validate three channel system operation not uniquely different from 
two channel system operation

• Demonstrate XR-100 system operation at 100 kW system power 
for 100 hours

– Final program objective for NextSTEP

– *VF-5 pumps saturate prior to 100 continuous hours operation at 
high flow rates
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Two Channel XR-100 System Operation 

• XR-100 system successfully 
reached thermal equilibrium 
operating two channels at >50 kW

– 73.5 kW total power

• 300 V, 220 A discharge 

–Middle channel on 3 DSUs

– Outer channel on 4 DSU

– Following magnet bakeout and 
thruster conditioning

• Thermal equilibrium defined as 
temperature changes <1 oC/hour

– Thruster reached thermal equilbrium
within 6 hours at 73.5 kW

– DSUs reached thermal equilibrium 
within 1 hour at 73.5 kW

• Repeated during single DSU vacuum test 
at 10.5 kW discharge power into resistive 
load
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Thruster Behavior at 73.5 kW
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Thermal equilibrium reached after dwell at 73.5 kW operating point



PPU Performance
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Distributed Load Across All Outer Channel Power Modules



PPU Performance – Closed-Loop Current 
Control
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Valve current constantly adjusted to maintain Discharge current



Three Channel XR-100 System Operation

• XR-100 system demonstrated 
electrically stable operation at 
>50 kW

– 245 A due to facility limitations

• Inner channel on 25 A limit lab 
power supply

• Middle and Outer channels on 
DSUs

– After demo at 300 V, increased 
voltage to increase power up to 
100 kW

• Demonstrated 93 kW EP string 
operation at 350 V for short 
duration

– System performance measured 
at 82.3 kW and 85.4 kW total

• High current event ended test 
campaign prior to thermal 
equilibrium
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Three Channel XR-100 System Operation
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Increased Discharge Voltage to Increase Power



Inner Middle Outer
Total 

Power

Thrust 

[mN]

Isp 

[s]

System 

Efficiency

- 300V/79.3A 301V/141A 73.7 kW 4100 1976 56.9%

- 300V/79A 300V/141A 73.7 kW 4080 1951 56.0%

299V/25A 300V/78.9A 300V/141A 80.1 kW 4574 1960 56.1%

309V/24.9A 308V/78.7A 308V/140A 82.3 kW 4600 1974 55.5%

319V/25A 320V/79.2A 319V/141A 85.4 kW 4658 2012 55.3%

XR-100 System Performance
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System performance measured at high thrust, low efficiency case



• Three channel system performance around 300 V and 75 kW 

discharge power compared to three channel thruster-only performance 

from 2017 testing (gray)

Thruster vs System Performance
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XR-100 system performance consistent with X3 NHT performance

Inner Middle Outer
Discharge 

Power

Thrust 

[mN]

Isp 

[s]

T/P

[mN/kW]

299V/25A 300V/78.9A 300V/141A 73.4 kW 4574 1960 62.0

298.4V/33.6A 300.1V/78.6A 298.1V/138.5A 74.9 kW 4640 2020 61.9

309V/24.9A 308V/78.7A 308V/140A 75.0 kW 4600 1974 60.5

319V/25A 320V/79.2A 319V/141A 78.3 kW 4658 2012 59.2



• Thermal equilibrium of the EP string at 73.5 kW total power

– Highest power demonstration published to date

• Highest measured thrust of an EP string published to date

– 4.1 N during two channel operation

– 4.6 N during three channel operation with 7 DSUs and a lab power supply

• Highest current operation of an EP string published to date

– 220 A during two channel operation

• Highest current demonstration of a PPU

– 245 A during three channel operation with 7 DSUs and a lab power supply

Accomplishments
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• Modification of the thruster magnetic circuit

– Reduce thermal loading

– Implement magnetic shielding

• Improve electrical isolation for thruster components

• Incorporate better heat transfer design within the DSU

• Modify DSU operating range to better align with NHT operating range

• Size PPU circuit components to withstand higher current events

Forward Work
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